Microservices
Troubleshoot Your RoR Microservices with Distributed Tracing

Summarized using AI

Troubleshoot Your RoR Microservices with Distributed Tracing

Yoshinori Kawasaki • April 03, 2019 • Minneapolis, MN

The video, titled "Troubleshoot Your RoR Microservices with Distributed Tracing", features Yoshinori Kawasaki at RailsConf 2019, where he discusses the challenges faced in microservices architecture, particularly in troubleshooting and understanding the interactions between various components of an application. Kawasaki guides the audience through the necessity of distributed tracing as a solution for these issues, elaborating on how it enhances observability in systems.

Key Points Discussed:

  • Introduction to Microservices:

    • Many developers find themselves transitioning from monolithic applications to microservices due to growth.
    • This evolution increases the complexity of systems, making troubleshooting difficult.
  • Challenges of Microservices:

    • Understanding dependencies and interactions in a distributed architecture is cumbersome.
    • Manual efforts to map service dependencies can be impractical and time-consuming. For instance, trying to understand the entire flow of an end-user request across multiple services is challenging.
  • Distributed Tracing Explained:

    • A technique that captures causal relationships and the sequence of operations involved in a single request, allowing developers to trace issues more effectively.
    • Visual tools, such as DataDog and Stackdriver, can illustrate the interactions between services, revealing points of latency or failures.
  • OpenCensus Framework:

    • Introduced as a vendor-neutral library for implementing distributed tracing in applications.
    • Supports multiple programming languages and can send data to various backends, thus providing flexibility in data analysis.
    • The video details how to integrate OpenCensus with Rails applications and describes middleware structures that allow for efficient tracing.
  • Implementation of OpenCensus:

    • Explains how middleware can extract trace context from incoming requests and propagate it through service calls, ensuring complete visibility of requests across services.
    • Example code snippets are presented to illustrate how to create spans for different operations within the application.
  • Future of OpenCensus and OpenTracing:

    • Discusses the merging of OpenCensus with OpenTracing, emphasizing continued developments in tracing technologies.

Conclusion and Takeaways:

  • Distributed tracing presents a powerful solution to the complexities that arise in microservices environments, enabling better understanding, performance diagnosis, and faster troubleshooting of applications.
  • The simplicity of adopting distributed tracing with frameworks like OpenCensus allows developers to gain deep insights into their applications and ultimately improve system reliability.
  • Overall, developers are encouraged to implement distributed tracing techniques to alleviate the pain of microservices troubleshooting.

Troubleshoot Your RoR Microservices with Distributed Tracing
Yoshinori Kawasaki • April 03, 2019 • Minneapolis, MN

RailsConf 2019 - Troubleshoot Your RoR Microservices with Distributed Tracing by Yoshinori Kawasaki
_______________________________________________________________________________________________
Cloud 66 - Pain Free Rails Deployments
Cloud 66 for Rails acts like your in-house DevOps team to build, deploy and maintain your Rails applications on any cloud or server.

Get $100 Cloud 66 Free Credits with the code: RailsConf-19
($100 Cloud 66 Free Credits, for the new user only, valid till 31st December 2019)

Link to the website: https://cloud66.com/rails?utm_source=-&utm_medium=-&utm_campaign=RailsConf19
Link to sign up: https://app.cloud66.com/users/sign_in?utm_source=-&utm_medium=-&utm_campaign=RailsConf19
_______________________________________________________________________________________________
In microservices architecture, it is often challenging to understand interaction and dependencies between individual components involved in an end-user request. Distributed tracing is a technique to improve observability of such microservices behaviors and to help understand performance bottlenecks, to investigate cascaded failures, or in general, to troubleshoot.

In this talk, I will show how we’ve implemented distributed tracing in Rails apps using OpenCensus, a set of vendor-neutral libraries to collect and export metrics and traces, and real world examples from our system that consists of about 100 microservices built with Ruby, Go, Python, Node and Rust. I will also discuss other methodologies to improve “observability” of Rails apps in microservices and future direction.

If you feel pain in troubleshooting microservices of Rails, you’ll love distributed tracing.

RailsConf 2019

00:00:19.489 My name is Yoshinori Kawasaki, and here are my Twitter handles. Please follow me if you can read Japanese; the one on the second line is where I'm more active. You can reach out to me with any questions after the talk. I work at a company named What a Tree in Tokyo, which provides web services and mobile apps that help people meet exciting companies and find future teammates who share their interests and passions.
00:00:44.699 To start, let’s do a quick poll. Please raise your hand if you work on a microservices architecture. Okay, thank you. I assume you are experiencing challenges when trying to debug or fix issues whenever problems arise. This talk is for you. Now, how many of you are working with a monolithic Rails architecture? Raise your hands. Great! For those of you working with a monolith, you may feel productive in developing your codebase, which can be quite large and complex.
00:01:20.310 However, if your product is successful, your system and engineering team will likely grow rapidly. So whether you are in a microservice environment or still using a monolithic architecture, this talk has something for you. I posted a poll on Twitter this morning, and I would appreciate it if you could vote before the end of the presentation.
00:01:54.390 In this talk, I will explain why you need distributed tracing, what it is, and how it helps in microservice architectures. In the second part, I will introduce OpenCensus, a set of libraries for distributed tracing and other observability features. Finally, I will show you how you can use OpenCensus in your Rails applications.
00:03:19.740 Let’s first talk about microservices. Everyone seems to be excited about microservices, right? At first, it sounds like a productive way to scale your system and team. However, as you start implementing microservices, you quickly realize that it can become quite difficult to manage.
00:03:39.180 Let me show you how our system used to look back in 2012. It was straightforward. We had a single monolithic Ruby on Rails app with a tiny database, so the only programming language we used was Ruby. Fast forward seven years, and we have grown significantly, going public and opening offices in four countries. Our system now consists of more than 100 services and 20 databases, built with five different programming languages including Ruby, Go, and Python. This exponential growth complicates things.
00:04:25.169 The challenge with microservices architecture lies in understanding the interactions between various services, especially when there’s an end-user request. You need to pinpoint which microservices are involved when a problem occurs. For instance, we have an app that scans business cards. When you scan a card, it detects text and sends the image to the backend. It extracts the text, categorizes it into various fields, retrieves company information, and sends that back to the user. This is a lot of work happening under the hood.
00:05:06.590 On the right-hand side, you can see a diagram that illustrates the microservices and databases involved, as well as the sequence of calls being made. This chart was created manually by sifting through the source code of different microservices. While this was crucial for new engineers on the team to understand how the endpoint worked, it is impractical to do this for every API endpoint.
00:05:52.760 Now, let’s take a hypothetical scenario with several microservices and two databases serving two features, X and Y. If a user reports that service G is throwing a lot of errors, you would usually speculate about which microservices might be affecting this feature. You try to determine recent changes to those services without any clear visibility into how they are interconnected.
00:06:40.000 This lack of insight makes debugging incredibly challenging. With distributed tracing, you can capture the causal links and understand how components cooperate in a single request. It shows you which components were involved, in what order they were called, and how long each operation took. This way, you can identify if an operation is failing or taking longer than usual.
00:07:45.070 A trace is a collection of operations performed within a single end-to-end request. Each operation is represented as a 'span,' and this structure allows for a tree of spans showing the relationship among operations. Each span contains information like start and end times, along with other contextual details.
00:08:56.840 Let me show you how distributed tracing looks in practice. Here’s an example from DataDog, where each color represents a different service involved in a request. You can see how long each service took to handle the request and the relationships between them. DataDog also offers a service map, which effectively acts as a dependency graph for your microservices.
00:09:48.920 This service map is created automatically from tracing data, providing dynamic insights into your system without needing manual intervention. If you click on any component, you can get more information about upstream and downstream dependencies.
00:10:35.230 Another similar tool is Stackdriver from Google Cloud, which offers similar functionality. For example, you can filter traces based on latency and drill down into more contextual information. Now, let’s discuss OpenCensus, which is a set of vendor-neutral libraries for collecting and exporting traces and metrics.
00:12:08.320 OpenCensus was originally developed at Google, and is designed to work across various programming languages, including Ruby, Java, Python, and more. It focuses on capturing telemetry data and allows you to send this data to whichever backend you prefer.
00:12:53.070 This flexibility means you can test different backends without being locked into one option. In OpenCensus, the data model leverages protocol buffers to define what fields are captured, such as trace ID, span ID, duration, etc.
00:14:08.370 When using OpenCensus, you can create spans on both the server and client sides when making remote procedure calls or HTTP requests. Spans contain vital data, including start time and end time, and they help in tracking performance across different components of your system.
00:15:55.760 Let’s break down how to integrate OpenCensus into a Ruby on Rails application. Each application should include a collection and exporter module provided by OpenCensus. When making an HTTP request, you pass trace context like trace ID and span ID through HTTP headers.
00:17:35.520 The OpenCensus middleware extracts this trace context from incoming requests and creates a new span for the process. It can also capture common events in Rails, such as database queries and rendering view templates.
00:18:15.700 By leveraging ActiveSupport notifications, you can subscribe to specific events and track them effectively in your traces. For outbound requests, the middleware wraps HTTP calls to create spans and populate them based on the response.
00:19:50.750 Overall, using OpenCensus makes tracing straightforward and productive. If you want to implement distributed tracing in your Rails app, you can do so by configuring the middleware to auto-inject tracing capabilities.
00:21:10.030 This flexibility allows you to send traces to multiple backends without being constrained to one solution. If your required exporter isn’t available, you can create your own, and the process is simple.
00:22:55.740 As we wrap up, I want to emphasize that OpenTracing, similar to OpenCensus, provides support for various programming languages and tracing backends. They are in the process of merging, benefiting the community as they combine their efforts.
00:24:30.850 In conclusion, distributed tracing is instrumental in understanding and troubleshooting your microservices architecture. It provides you with valuable insights into your system’s performance and interactions.
00:25:54.820 You can start implementing distributed tracing easily with OpenCensus today. Thank you very much, and I would appreciate your feedback!
Explore all talks recorded at RailsConf 2019
+98